miércoles, 19 de febrero de 2014

CIRCUITOS INTEGRADOS

Definición:

Un circuito integrado (CI), también conocido como chip o microchip, es una pastilla pequeña de material semiconductor, de algunos milímetros cuadrados de área, sobre la que se fabrican circuitos electrónicos generalmente mediante fotolitografía y que está protegida dentro de un encapsulado de plástico o cerámica. El encapsulado posee conductores metálicos apropiados para hacer conexión entre la pastilla y un circuito impreso.

Tipos:
Existen al menos tres tipos de circuitos integrados:

Circuitos monolíticos: Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.
Circuitos híbridos de capa fina: Son muy similares a los circuitos monolíticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que los progresos en la tecnología permitieron fabricar resistores precisos.


Circuitos híbridos de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula, transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Los resistores se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, en cápsulas plásticas o metálicas, dependiendo de la disipación de energía calórica requerida. En muchos casos, la cápsula no está "moldeada", sino que simplemente se cubre el circuito con una resina epoxi para protegerlo. En el mercado se encuentran circuitos híbridos para aplicaciones en módulos de radio frecuencia (RF), fuentes de alimentación, circuitos de encendido para automóvil, etc.

Características:

Este Circuito Integrado (C.I.) es para los experimentadores y aficionados un dispositivo barato con el cual pueden hacer muchos proyectos. Este temporizador es tan versátil que se puede utilizar para modular una señal en Amplitud Modulada (A.M.)

Está constituido por una combinación de comparadores lineales, flip-flops (biestables digitales), transistor de descarga y excitador de salida.

Las tensiones de referencia de los comparadores se establecen en 2/3 V para el primer comparador C1 y en 1/3 V para el segundo comparador C2, por medio del divisor de tensión compuesto por 3 resistencias iguales R. En el gráfico se muestra el número de pin con su correspondiente función.

En estos días se fabrica una versión CMOS del 555 original, como el Motorola MC1455, que es muy popular. Pero la versión original de los 555 sigue produciéndose con mejoras y algunas variaciones a sus circuitos internos. El 555 esta compuesto por 23 transistores, 2 diodos, y 16 resistores encapsulado en silicio. Hay un circuito integrado que se compone de dos temporizadores en una misma unidad, el 556, de 14 pines y el poco conocido 558 que integra cuatro 555 y tiene 30 pines.


Hoy en día, si ha visto algún circuito comercial moderno, no se sorprenda si se encuentra un circuito integrado 555 trabajando en él. Es muy popular para hacer osciladores que sirven como reloj (base de tiempo) para el resto del circuito.

Dibujo:


File:Microchips.jpg

TRANSISTORES

Definición:

El transistor es un dispositivo electrónico semiconductor utilizado para producir una señal de salida en respuesta a otra señal de entrada. Cumple funciones de amplificador, oscilador, conmutador o rectificador. El término «transistor» es la contracción en inglés de transfer resistor («resistencia de transferencia»). Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario: radios, televisores, reproductores de audio y video, relojes de cuarzo, computadoras, lámparas fluorescentes, tomógrafos, teléfonos celulares, etc.

Tipos:

Transistor de contacto puntual: Llamado también «transistor de punta de contacto», fue el primer transistor capaz de obtener ganancia, inventado en 1947 por John Bardeen y Walter Brattain. Consta de una base de germanio, semiconductor para entonces mejor conocido que la combinación cobre-óxido de cobre, sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de base es capaz de modular la resistencia que se «ve» en el colector, de ahí el nombre de transfer resistor. Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.
Transistor de unión bipolar: El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o «huecos» (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).
La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor está mucho más contaminado que el colector).
El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.
Transistor de efecto de campo: El transistor de efecto de campo de unión (JFET), fue el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contactos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando la puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.
El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.
Fototransistor: Los fototransistores son sensibles a la radiación electromagnética en frecuencias cercanas a la de la luz visible; debido a esto su flujo de corriente puede ser regulado por medio de la luz incidente. Un fototransistor es, en esencia, lo mismo que un transistor normal, sólo que puede trabajar de 2 maneras diferentes:
  • Como un transistor normal con la corriente de base (IB) (modo común);
  • Como fototransistor, cuando la luz que incide en este elemento hace las veces de corriente de base. (IP) (modo de iluminación).
Características:

La corriente de electrones que fluye en el interior de un tubo o válvula también se produce a través de ciertos sólidos como el metal llamado germanio. Amplían muchísimo la corriente y pueden funcionar con baterías de una cienmilésima de vatio. Amplía voltajes y corrientes eléctricas. Su vida es larga y su tamaño es muy pequeño.

Dibujo:


RELÉ

Definición:

El relé o relevador es un dispositivo electromecánico. Funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes.
Fue inventado por Joseph Henry en 1835.
Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores". De ahí "relé".

Tipos:

Relés electromecánicos

Relés de tipo armadura: pese a ser los más antiguos siguen siendo lo más utilizados en multitud de aplicaciones. Un electroimán provoca la basculación de una armadura al ser excitado, cerrando o abriendo los contactos dependiendo de si es NA (normalmente abierto) o NC (normalmente cerrado).
Relés de núcleo móvil: a diferencia del anterior modelo estos están formados por un émbolo en lugar de una armadura. Debido a su mayor fuerza de atracción, se utiliza un solenoide para cerrar sus contactos. Es muy utilizado cuando hay que controlar altas corrientes.
Relé tipo reed o de lengüeta: están constituidos por una ampolla de vidrio, con contactos en su interior, montados sobre delgadas láminas de metal. Estos contactos conmutan por la excitación de una bobina, que se encuentra alrededor de la mencionada ampolla.

Relés polarizados o biestables: se componen de una pequeña armadura, solidaria a un imán permanente. El extremo inferior gira dentro de los polos de un electroimán, mientras que el otro lleva una cabeza de contacto. Al excitar el electroimán, se mueve la armadura y provoca el cierre de los contactos. Si se polariza al revés, el giro será en sentido contrario, abriendo los contactos ó cerrando otro circuito.


Relé de estado sólido: Se llama relé de estado sólido a un circuito híbrido, normalmente compuesto por un optoacoplador que aísla la entrada, un circuito de disparo, que detecta el paso por cero de la corriente de línea y un triac o dispositivo similar que actúa de interruptor de potencia. Su nombre se debe a la similitud que presenta con un relé electromecánico; este dispositivo es usado generalmente para aplicaciones donde se presenta un uso continuo de los contactos del relé que en comparación con un relé convencional generaría un serio desgaste mecánico, además de poder conmutar altos amperajes que en el caso del relé electromecánico destruirian en poco tiempo los contactos. Estos relés permiten una velocidad de conmutación muy superior a la de los relés electromecánicos.
Relé de corriente alterna: Cuando se excita la bobina de un relé con corriente alterna, el flujo magnético en el circuito magnético, también es alterno, produciendo una fuerza pulsante, con frecuencia doble, sobre los contactos. Es decir, los contactos de un relé conectado a la red, en algunos lugares, como varios países de Europa y latinoamérica oscilarán a 2 x 50 Hz y en otros, como en Estados Unidos lo harán a 2 x 60 Hz. Este hecho se aprovecha en algunos timbres y zumbadores, como un activador a distancia. En un relé de corriente alterna se modifica la resonancia de los contactos para que no oscilen.


Relé de láminas: Este tipo de relé se utilizaba para discriminar distintas frecuencias. Consiste en un electroimán excitado con la corriente alterna de entrada que atrae varias varillas sintonizadas para resonar a sendas frecuencias de interés. La varilla que resuena acciona su contacto, las demás no. Los relés de láminas se utilizaron en aeromodelismo y otros sistemas de telecontrol.

Características:

Las características generales de cualquier relé son:
  • El aislamiento entre los terminales de entrada y de salida.
  • Adaptación sencilla a la fuente de control.
  • Posibilidad de soportar sobrecargas, tanto en el circuito de entrada como en el de salida.
  • Las dos posiciones de trabajo en los bornes de salida de un relé se caracterizan por:
  1. - En estado abierto, alta impedancia.
  2. - En estado cerrado, baja impedancia.

Para los relés de estado sólido se pueden añadir :
  • Gran número de conmutaciones y larga vida útil.
  • Conexión en el paso de tensión por cero, desconexión en el paso de intensidad por cero.
  • Ausencia de ruido mecánico de conmutación.
  • Escasa potencia de mando, compatible con TTL y MOS.
  • insensibilidad a las sacudidas y a los golpes.
  • Cerrado a las influencias exteriores por un recubrimiento plástico.
Dibujo:

FUSIBLE

Definición:

En electricidad, se denomina fusible a un dispositivo, constituido por un soporte adecuado, un filamento o lámina de un metal o aleación de bajo punto de fusión que se intercala en un punto determinado de una instalación eléctrica para que se funda, por Efecto Joule, cuando la intensidad de corriente supere, por un cortocircuito o un exceso de carga, un determinado valor que pudiera hacer peligrar la integridad de los conductores de la instalación con el consiguiente riesgo de incendio o destrucción de otros elementos.

Tipos:

Según su tamaño tenemos:
Cartuchos cilíndricos:

  • Tipo CI00, de 8,5 x 31,5 mm, para fusibles de 1 a 25 A.
  • Tipo CI0, de 10 x 38 mm, para fusibles de 2 a 32 A.
  • Tipo CI1, de 14 x 51 mm, para fusibles de 4 a 40 A.
  • Tipo CI2, de 22 x 58 mm, para fusibles de 10 a 100 A.
  • Cartucho fusible 14 x 51 mm, 25 A.

Fusibles tipo D:

  • Tamaño de 25 A, para fusibles de 2 a 25 A.
  • Tamaño de 63 A, para fusibles de 35 y 50 A.
  • Tamaño de 100 A, para fusibles de 80 y 100 A.
  • Fusible y portafusible tipo D.
Fusibles tipo D0:

  • Tipo D01, para fusibles de 2 a 16 A.
  • Tipo D02, para fusibles de 2 a 63 A.
  • Tipo D03, para fusibles de 80 y 100 A.
  • Fusible D02, 63 A.
Fusibles tipo de cuchillas o también llamados NH de alto poder de ruptura (APR):

  • Tipo CU0, para fusibles desde 50 hasta 1250 A.
  • Tipo CU1, para fusibles desde 160 hasta 250 A.
  • Tipo CU2, para fusibles desde 250 hasta 400 A.
  • Tipo CU3, para fusibles desde 500 y 630 A.
  • Tipo CU4, para fusibles desde 800 hasta 1250 A.
  • Fusible NH00 o de cuchillas, 40 A
Otra denominación de los fusibles de cuchillas o NH:

  • Tamaño 00 (000), 35 a 100 A
  • Tamaño 0 (00), 35 a 160 A
  • Tamaño 1, 80 a 250 A
  • Tamaño 2, 125 a 400 A
  • Tamaño 3, 315 a 630 A
  • Tamaño 4, 500 a 1000 A
  • Tamaño 4a, 500 a 1250 A
Características:

Los fusibles de un solo elemento manejan temperaturas de fusión bajas y altas con elementos como el estaño, la plata y el cobre. Los fusibles tipo K son llamados fusibles con elemento rápido y los fusibles tipo T, fusibles con elemento lento de acuerdo con la relación de velocidad que manejan unos y otros. 

Los primeros tienen una relación de velocidad que varía de 6 para regímenes de 6 amperios y 8 para los de 200 amperios, mientras que los segundos manejan para los mismos regímenes de corriente relación de velocidad de 10 y 13 respectivamente.

Los fusibles tipo H son llamados fusibles de elemento extra rápido y sus relaciones de velocidad son 4 y 6 para los regímenes de 6 y 100 amperios.

Teniendo en cuenta la curva de seguridad térmica del transformador y sobreponiendo a ésta las curvas características de fusibles de un solo elemento (K, T y H), se concluye que la protección no es completa. Se tiene una protección del sistema desprotegiendo el transformador o se obtiene una protección del sistema y del transformador con el inconveniente de no poder sobrecargar al máximo el transformador.

Los fusibles de doble elemento manejan protecciones contra cortos y sobrecargas, obteniendo curvas características que representan una excelente protección. Los fusibles tipo SR y VS, manejan relaciones de velocidad de 20 y 30 para los mismos regímenes anterior. Teniendo en cuenta la curva de seguridad térmica del transformador y sobreponiendo a ésta las curvas características de fusibles de doble elemento (SR y VS), se concluye que la protección es completa. Se tiene una protección para el sistema y el transformador con la ventaja de obtener el máximo provecho de capacidad de sobrecarga del transformador.

Las sobre cargas y cortacircuitos ocasionan:
  • Daños en el transformado y equipos eléctricos 
  • Problemas en la distribución de corriente 
  • Pérdida de corriente 
  • Deterioro en la calidad del servicio eléctrico 
  • Pérdida de tiempo por la duración de la falla 
  • Pérdidas económicas
Dibujo:
200AIndustrialFuse.jpg

BATERÍA O PILA

Definición:

Se denomina batería, batería eléctrica, acumulador eléctrico o simplemente acumulador al dispositivo capaz de almacenar electricidad en forma de energía química y, posteriormente, usando procedimientos electroquímicos, producir energía eléctrica. Este ciclo puede repetirse por un determinado número de veces. Se trata de un generador eléctrico secundario; es decir, un generador que no puede funcionar sin que se le haya suministrado electricidad previamente, mediante lo que se denomina proceso de carga.

Tipos:

Baterías de plomo-ácido: Batería de ebonita con terminales expuestos.
Está constituida por dos electrodos de plomo, de manera que, cuando el aparato está descargado, se encuentra en forma de sulfato de plomo (II) (PbSO4) incrustado en una matriz de plomo metálico en el elemento metálico (Pb); el electrólito es una disolución de ácido sulfúrico.

Baterías de níquel-hierro (Ni-Fe): La batería de níquel-hierro, también denominada de ferroníquel, fue inventada por Waldemar Jungner en 1899, posteriormente desarrollada por Thomas Alva Edison y patentada en 1903. En el diseño original de Edison el cátodo estaba compuesto por hileras de finos tubos formados por laminas enrolladas de acero niquelado, estos tubos están rellenos de hidróxido de níquel u oxi-hidróxido de níquel (NiOOH). El ánodo se componía de cajas perforadas delgadas de acero niquelado que contienen polvo de óxido ferroso (FeO). El electrólito es alcalino, una disolución de un 20 % de potasa cáustica (KOH) en agua destilada.
Baterías de níquel-cadmio (Ni-Cd): Utilizan un cátodo de hidróxido de níquel y un ánodo de un compuesto de cadmio. El electrolito es de hidróxido de potasio. Esta configuración de materiales permite recargar la batería una vez está agotada, para su reutilización. Sin embargo, su densidad de energía es de tan sólo 50 Wh/kg, lo que hace que tengan poca capacidad.
Baterías de níquel-hidruro metálico (Ni-MH): Utilizan un ánodo de hidróxido de níquel y un cátodo de una aleación de hidruro metálico.
Ventajas

  • Este tipo de baterías se encuentran menos afectadas por el llamado efecto memoria.

Desventajas

  • No admiten bien el frío extremo, reduciendo drásticamente la potencia eficaz que puede entregar.

Características

  • Voltaje proporcionado: 1,2 V
  • Densidad de energía: 80 Wh/kg
  • Capacidad usual: 0,5 a 2,8 A (en pilas tipo AA)

Baterías de iones de litio (Li-ion): Las baterías de iones de litio (Li-ion) utilizan un ánodo de grafito y un cátodo de óxido de cobalto, trifilina (LiFePO4) u óxido de manganeso. Su desarrollo es más reciente, y permite llegar a altas densidades de capacidad. No admiten descargas y sufren mucho cuando éstas suceden; por lo que suelen llevar acoplada circuitería adicional para conocer el estado de la batería, y evitar así tanto la carga excesiva como la descarga completa.

Baterías de polímero de litio (LiPo): Son una variación de las baterías de iones de litio (Li-ion). Sus características son muy similares, pero permiten una mayor densidad de energía, así como una tasa de descarga bastante superior. Estas baterías tienen un tamaño más reducido respecto a las de otros componentes. Cada celda tiene un voltaje nominal de 3,7 V, voltaje máximo 4,2 y mínimo 3,0. Este último debe respetarse rigurosamente ya que la pila se daña irreparablemente a voltajes menores a 3 voltios. Se suele establecer la siguiente nomenclatura XSYP que significa X celdas en serie, e Y en paralelo. Por ejemplo 3s2p son 2 baterías en paralelo, donde cada una tiene 3 celdas o células. Esta configuración se consigue conectando ambas baterías con un cable paralelo.

Caracteristicas:

Un acumulador se define por su tensión nominal y por la cantidad de electricidad capaz de suministrar.

Tensión Nominal: La tensión total de una batería es el producto de la tensión de un elemento por el número de ellos conectados en serie que ella comporta. La tensión de un elemento en un acumulador de plomo es de 2V, por lo cual una batería de seis elementos tiene una tensión nominal de 12 V. Cuando una batería es sometida una corriente de carga la tensión por elemento puede llegar a 2,6V y cuando es sometida a una tensión de descarga puede bajar a los 1.6V.

Dibujo:

INDUCTOR O BOBINA

Definición:

Un inductor o bobina es un componente pasivo de un circuito eléctrico que, debido al fenómeno de la autoinducción, almacena energía en forma de campo magnético.

Tipos:

Fijas:
Con núcleo de aire: El conductor se arrolla sobre un soporte hueco y posteriormente se retira este quedando con un aspecto parecido al de un muelle. Se utiliza en frecuencias elevadas.
Una variante de la bobina anterior se denomina solenoide y difiere en el aislamiento de las espiras y la presencia de un soporte que no necesariamente tiene que ser cilíndrico. Se utiliza cuando se precisan muchas espiras. Estas bobinas pueden tener tomas intermedias, en este caso se pueden considerar como 2 o más bobinas arrolladas sobre un mismo soporte y conectadas en serie. Igualmente se utilizan para frecuencias elevadas.

Con núcleo sólido: Poseen valores de inductancia más altos que los anteriores debido a su nivel elevado de permeabilidad magnética. El núcleo suele ser de un material ferromagnético. Los más usados son la ferrita y el ferroxcube. Cuando se manejan potencias considerables y las frecuencias que se desean eliminar son bajas se utilizan núcleos parecidos a los de los transformadores (en fuentes de alimentación sobre todo). Así nos encontraremos con las configuraciones propias de estos últimos. Las secciones de los núcleos pueden tener forma de EI, M, UI y L.

Las bobinas de nido de abeja se utilizan en los circuitos sintonizadores de aparatos de radio en las gamas de onda media y larga. Gracias a la forma del bobinado se consiguen altos valores inductivos en un volumen mínimo.

Las bobinas de núcleo toroidal se caracterizan por que el flujo generado no se dispersa hacia el exterior ya que por su forma se crea un flujo magnético cerrado, dotándolas de un gran rendimiento y precisión.
La bobinas de ferrita arrolladas sobre núcleo de ferrita, normalmente cilíndricos, con aplicaciones en radio es muy interesante desde el punto de vista practico ya que, permite emplear el conjunto como antena colocándola directamente en el receptor.

Las bobinas grabadas sobre el cobre , en un circuito impreso tienen la ventaja de su mínimo coste pero son difícilmente ajustables mediante núcleo.
Variables
También se fabrican bobinas ajustables. Normalmente la variación de inductancia se produce por desplazamiento del núcleo. Las bobinas blindadas pueden ser variables o fijas, consisten encerrar la bobina dentro de una cubierta metálica cilíndrica o cuadrada, cuya misión es limitar el flujo electromagnético creado por la propia bobina y que puede afectar negativamente a los componentes cercanos a la misma.
Características:
  • Permeabilidad magnética (m).- Es una característica que tiene gran influencia sobre el núcleo de las bobinas respecto del valor de la inductancia de las mismas. Los materiales ferromagnéticos son muy sensibles a los campos magnéticos y producen unos valores altos de inductancia, sin embargo otros materiales presentan menos sensibilidad a los campos magnéticos. El factor que determina la mayor o menor sensibilidad a esos campos magnéticos se llama permeabilidad magnética. Cuando este factor es grande el valor de la inductancia también lo es.
  • Factor de calidad (Q).- Relaciona la inductancia con el valor óhmico del hilo de la bobina. La bobina será buena si la inductancia es mayor que el valor óhmico debido al hilo de la misma.
Dibujo:

DIODOS

Definición:

Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un solo sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos. El diodo de vacío (que actualmente ya no se usa, excepto para tecnologías de alta potencia) es un tubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo.

Tipos:

Diodo Zener: Al diodo Zener, también llamado diodo regulador de tensión, podemos definirlo como un elemento semiconductor de silicio que tiene la característica de un diodo normal cuando trabaja en sentido directo, es decir, en sentido de paso; pero en sentido inverso, y para una corriente inversa superior a un determinado valor, presenta una tensión de valor constante. Este fenómeno de tensión constante en el sentido inverso convierte a los diodos de Zener en dispositivos excepcionalmente útiles para obtener una tensión relativamente invisible a las variaciones de la tensión de alimentación, es decir, como dispositivos reguladores de tensión.


Diodo Varactor (Varicap): Este diodo, también llamado diodo de capacidad variable, es, en esencia, un diodo semiconductor cuya característica principal es la de obtener una capacidad que depende de la tensión inversa a él aplicada. Se usa especialmente en los circuitos sintonizadores de televisión y los de receptores de radio en FM.


Diodo Túnel: Este diodo presenta una cualidad curiosa que se pone de manifiesto rápidamente al observar su curva característica, la cual se ve en el gráfico. En lo que respecta a la corriente en sentido de bloqueo se comporta como un diodo corriente, pero en el sentido de paso ofrece unas variantes según la tensión que se le somete. La intensidad de la corriente crece con rapidez al principio con muy poco valor de tensión hasta llegar a la cresta (C) desde donde, al recibir mayor tensión, se produce una pérdida de intensidad hasta D que vuelve a elevarse cuado se sobrepasa toda esta zona del valor de la tensión.


Fotodiodo: es un semiconductor construido con una unión PN, sensible a la incidencia de la luz visible o infrarroja. Para que su funcionamiento sea correcto se polariza inversamente, con lo que se producirá una cierta circulación de corriente cuando sea excitado por la luz. Debido a su construcción, los fotodiodos se comportan como células fotovoltaicas, es decir, en ausencia de luz exterior generan una tensión muy pequeña con el positivo en el ánodo y el negativo en el cátodo. Esta corriente presente en ausencia de luz recibe el nombre de corriente de oscuridad.
Características:
La forma de funcionamiento de un diodo común de silicio se puede apreciar observando la curva característica que se crea cuando se polariza, bien de forma directa, o bien de forma inversa. En ambos casos la curva gráfica (representada en color verde en el siguiente gráfico) muestra la relación existente entre la corriente y la tensión o voltaje que se aplicada a los terminales del diodo.
En este gráfico correspondiente a la curva característica de un diodo de silicio, se puede observar un eje horizontal “x” y otro vertical “y” que se intersectan en el centro. En ese punto el valor del voltaje y de la intensidad de la corriente es igual a “0” volt. El eje vertical “y” muestra hacia arriba su parte positiva (+y) correspondiente al valor que puede alcanzar la intensidad de la corriente (Id) que atraviesa al diodo cuando se polariza directamente, mientras que hacia abajo su parte negativa (-y) muestra cuál será su comportamiento cuando se polariza de forma inversa (Ii). El eje horizontal “x” muestra hacia la derecha, en su parte positiva (+x), el incremento del valor de la tensión o voltaje que se aplicada al diodo en polarización directa (Vd). Hacia la izquierda del propio eje se encuentra la parte negativa (–x), correspondiente al incremento también del valor de la tensión o voltaje, pero en polarización inversa (Vi).


Si a un diodo común de silicio le aplicamos una tensión o voltaje (Vd) para polarizarlo directamente, partiendo de “0” volt (punto de intersección de los ejes de las coordenadas), se puede observar en el gráfico que hasta tanto no se alcanzan los 0,7 volt sobre el eje “+x”, el valor de la corriente (Id) no indica ninguna variación debido a la resistencia que, por debajo de ese voltaje, ofrece la “barrera de potencial” al flujo de los electrones en el punto de unión "p-n". Sin embargo, a partir de los 0,7 volt un pequeño incremento en el valor de la tensión, originará un enorme flujo de intensidad de corriente, tal como se puede apreciar en el gráfico, representado por la curva de color verde (paralela al eje “+y”), en la parte correspondiente a la “región de polarización directa” del diodo. (Como ya se mencionó anteriormente, a diferencia del diodo de silicio (Si), un diodo de germanio (Ge) sólo requiere 0,3 volt de polarización directa para que comience a conducir la corriente).

Ahora bien, si el diodo se polariza de forma inversa aplicándole una tensión o voltaje inverso a partir de “0” volt y siguiendo el eje –x, vemos que aunque incrementemos el valor de esa tensión, la corriente (Ii) no muestra variación alguna, excepto en un punto donde se produce una pequeñísima “corriente de fuga” de unos pocos microamper. A partir de ese momento si continuamos incrementando el valor de la tensión se llega al punto de “ruptura inversa”, (codo de la curva de color verde), donde el aislamiento de la unión "p-n" se rompe originándose un flujo de corriente, de valor tan alto, que destruye el diodo y lo hace inservible.

No obstante, existe un diodo de silicio, denominado “zener”, que, contrariamente a lo ya explicado, emplea para su funcionamiento la polarización inversa. Debido a su construcción especial tiene la propiedad de estabilizar la tensión o voltaje inverso cuando llega al punto de ruptura y alcanza la región de avalancha (denominada también “región zener”). De esa forma el alto valor del flujo de corriente que se origina a partir de ese punto lo aprovecha este diodo para reducir el valor de la tensión sin que llegue a destruirse como ocurriría con otro diodo común. Por tanto, mientras otros tipos de diodos de silicio o de germanio tienen que operar necesariamente por debajo de la tensión de ruptura inversa, el diodo zener puede soportar esa tensión de operación. Debido a esa característica este diodo se emplea, comúnmente, como regulador de tensión o voltaje en los circuitos electrónicos.

Otro diodo que funciona en polarización inversa es el denominado “varicap” o “varistor”, que se emplea para sintonizar las emisiones de radio y de televisión en los radiorreceptores y los televisores domésticos en sustitución del antiguo capacitor variable mecánico.

Dibujo: